An Ultra-Sensitive Method for Detecting Molecules

Agriculture & Animal Science Biotechnology Engineering Environment Materials & Chemicals Medical Nanotechnology Research Tools Security and Defense Sensors & Instrumentation

Patent status

Issued.

Brief description

To-date, plasmon detection methods have been utilized in the life sciences, electrochemistry, chemical vapor detection, and food safety. While passive surface plasmon resonators have lead to high-sensitivity detection in real time without further contaminating the environment with labels. Unfortunately, because these systems are passively excited, they are intrinsically limited by a loss of metal, which leads to decreased sensitivity.

Researchers at the University of California, Berkeley have developed a novel method to detect distinct molecules in air under normal conditions to achieve sub-parts per billion detection limits, the lowest limit reported. This device can be used detecting a wide array of molecules including explosives or bio molecular diagnostics utilizing the first instance of active plasmon sensor, free of metal losses and operating deep below the diffraction limit for visible light. This novel detection method has been shown to have superior performance than monitoring the wavelength shift, which is widely used in passive surface plasmon sensors.

Suggested uses

  • Detection of Food
  • Detection of Explosives
  • Detection of Molecules
  • Detection of gasses.

Advantages

  • Higher levels of sensitivity
  • Lower Ohmic loss of metals

Related materials

Interested in obtaining a license for this patent?

We are a group of experts looking to bridge the gap between academia and the industry. The licensing process can be long and tedious, and we will ensure the proper paperwork is presented within the required timelines.

Forget about bureaucracy and spend your time on what actually matters.